3.10

Pressure reducing valve direct operated

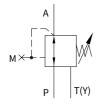
Type DR6DP...L5X

Size 6 up to 315 bar up to 60 L/min

Contents		Features
Function and configuration Symbols	02 02	- Direct operated structure - Porting pattern to DIN 24 340 form A, ISO4401
Ordering code	03	- 5 pressure ratings
Technical data	03	 2 adjustment elements:
Characteristic curves	04	· Rotary knob
Unit dimensions	05	· Adjustable bolt with protective cap
		 With pressure gauge connection
		- Check valve, optional

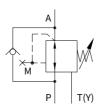
Function and configuration

The valve type DR6DP is a 3-way direct operated pressure reducing valve with a pressure relief function on the secondary side, to insure the secondary pressure steady. It is used to reduce the system pressure. The secondary pressure is set by the pressure adjustment element (4).


At static position, the valve is normally open and the pressure fluid flows unhindered from port P to port A. The pressure in port A acts at the spool(2) area opposite to the compression spring (3) via the control line (6). When the pressure in port A get the value setting at compression spring (3), the control spool (2) moves into the control position and keeps the setting pressure in port A constant. The internal control oil is taken from port A via the control line (6). If the pressure in port A still increases due to external forces on the actuator, the control spool (2) moves still further towards the compression spring (3). This causes a flow path to be opened via control land(8) on the control spool (2). Sufficient fluid then flows back to tank to prevent any further pressure rise.

Fluid in spring chamber always drained to tank externally via port T(Y).

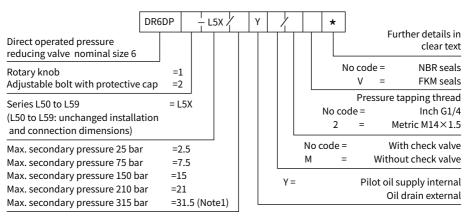
For free return flow from port A to port P an optional check valve(5) can be fitted One pressure gauge connection(1) used for monitoring the secondary pressure at the valve.


Symbols

Version "YM"

Pilot oil supply internal oil drain external

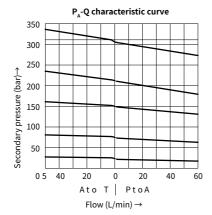
Without check valve

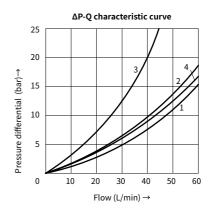


Version "Y"

Pilot oil supply internal oil drain external

With check valve

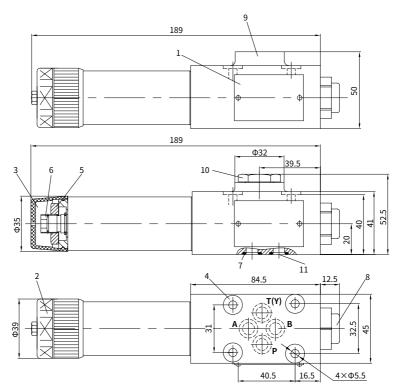

Ordering code



Notes 1: Only for adjustment form "2" and without check valve

Technical data

Fluid			Mineral oil suitable for NBR and FKM seal
			Phosphate ester for FKM seal
Fluid temperature range		°C	-30 to +80 (NBR seal)
			-20 to +80 (FKM seal)
Viscosity range		mm²/s	10 to 800
Degree of contamination			Maximum permissible degree of fluid contamination:
			Class 9. NAS 1638 or 20/18/15 , ISO4406
Max.operating pressure	Port P		315
Max.secondary pressure	Port A	bar	25; 75; 150; 210; 315(without check valve)
Max.backing pressure	PortT(Y)	_	16
Max. flow-rate		L/min	60
Weight		kg	Approx.1.6

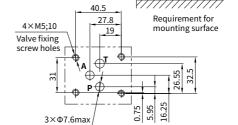

Notes:

The curve characteristics remain in a certain pressure range, with a low setting pressure. The characteristic curves for the pressure relief function are valid when the back pressure is zero!

- 1 P to A (min. pressure differential)
- 2 A to T (Y) (min. pressure differential)
- 3 Pressure differential only over the check valve
- 4 Pressure differential over the check valve and fully opened cross section

7 0.01/100mm

0.8/



- 1 Nameplate
- 2 Adjustment element "1"
- 3 Adjustment element "2"
- 4 Valve fixing holes
- 5 Lockable nut S=24
- 6 Internal hexagon screw S=10
- 7 O-ring 9.25×1.78 (A, B, P, T)
- 8 Pressure gauge connection: G1/4 or M14×1.5; 12 deep Hex wrench S=6
- 9 Without check valve
- 10 With check valve
- 11 Port B blocked, has no function

It must be ordered separately,

if connection plate is needed

Type: G341/01(G1/4), $G341/02(M14 \times 1.5)$ G342/01(G3/8), $G342/02(M18 \times 1.5)$ G502/01(G1/2), $G502/02(M22 \times 1.5)$

Dimensions of mounting surface

Valve fixing screws:

M5×50 internal hexagon screw GB/T 70.1-10.9, Tightening torque M_A=8.9Nm